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Figure 1. SeeingThroughClutter is a training-free method that combines vision-language models (VLMs), object removal, monocular depth
estimation, and image-to-3D reconstruction to automatically decompose a single photograph into a structured 3D scene. Given an input
image, a VLM repeatedly identifies the most prominent foreground object, reconstructs and poses it in 3D, removes it from the image, and
then iterates this process until no objects remain.

Abstract

We present SeeingThroughClutter, a method for recon-
structing structured 3D representations from single images
by segmenting and modeling objects individually. Prior ap-
proaches rely on intermediate tasks such as semantic seg-
mentation and depth estimation, which often underperform
in complex scenes, particularly in the presence of occlu-
sion and clutter. We address this by introducing an iter-
ative object removal and reconstruction pipeline that de-
composes complex scenes into a sequence of simpler sub-
tasks. Using VLMs as orchestrators, foreground objects
are removed one at a time via detection, segmentation, ob-
ject removal, and 3D fitting. We show that removing ob-
jects allows for cleaner segmentations of subsequent ob-
jects, even in highly occluded scenes. Our method requires
no task-specific training and benefits directly from ongo-
ing advances in foundation models. We demonstrate state-
of-the-art robustness on 3D-Front and ADE20K datasets.
Project Page: https://rioak.github.io/seeingthroughclutter/

1. Introduction

Reconstructing a structured 3D scene from a single RGB
image is one of the key remaining challenges in computer
vision and graphics with applications in content creation,
image editing, augmented and virtual reality, and robotic
perception [1]. These applications often require more than
an accurate reconstruction of the observed portions of the
image – it also need semantic decomposition of the entire
scene into objects and a complete geometry of each ob-
ject, including occluded regions [23]. Due to the inher-
ent ambiguity in this task, many existing methods rely on
data-driven priors, leveraging pretrained models for seman-
tic segmentation, monocular depth estimation, and object
geometry priors learned from online repositories of CAD
models [36, 37, 41]. We found, however, that many im-
age analysis tools fail on complex, cluttered real-world en-
vironments with self- and inter-object occlusions, which of-
ten leads to compounded errors and poor object completion
during reconstruction (see Fig. 2A).

To tackle this challenge, we rely on a trivial observation
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Figure 2. Single-view scene reconstruction is often challenging
due to the complexity and clutter of real-world environments.
Consider a scenario where the goal is to reconstruct a table within
a scene. In Figure 2A, we localize and segment the table using a
bounding box; however, the resulting mask is noisy and unclear,
largely because various items on the tabletop—and other objects
like chairs—fall inside the box. In contrast, Figure 2B shows the
same scene after these extraneous objects have been removed from
the visible region, yielding a much cleaner and more accurate seg-
mentation and reconstruction.

that it is easier to detect, segment, and reconstruct an object
if it is not occluded by scene clutter (see Fig. 2B). Thus,
we propose a pipeline for iteratively detecting, segmenting,
reconstructing, and removing foreground objects, inpaint-
ing the occluded regions, and repeating the process until
no objects are left in the scene (see Fig. 1). This process
offers three advantages. First, detecting and segmenting a
single foreground object is expected to be easier since it will
have fewer occlusions. Second, we leverage powerful 2D
generative models to inpaint segmented regions, effectively
completing occluded areas of cluttered objects. This leads
to cleaner and more complete segmentations — rather than
partial ones — of the occluded objects. These complete
2D segmentations provide higher-quality input to 3D recon-
struction modules, resulting in more accurate 3D models.
Finally, by relying on off-the-shelf models for more fun-
damental applications, our method can immediately bene-
fit from advances made in each of those problems without
needing to retrain any component.

The are a couple of technical challenges in designing our
pipeline. Perhaps the most important one is defining the ap-
propriate foreground object for removal. While this prob-
lem seems deceptively simple at first glance, in practice,
there are many spatial, physical, and semantic considera-
tions. For example, removing the closest object could lead
to selecting something that is still heavily occluded (e.g., a
floor), or removing an object that serves as a support can
mistakenly lead an inpainting method to re-generate the ob-
ject instead of an empty region. Our insight is to leverage a
VLM that implicitly contains rich semantic and spatial un-
derstanding of natural scenes, and thus can be effectively
used to orchestrate the object removal sequencing. Another
challenge arises while fitting reconstructed objects into a
single coherent scene. A common strategy is to employ

monocular depth estimation as a target for object placement
procedures. This approach, however, is not able to handle
occluded content. Our method, however, yields a sequence
of progressively decluttered RGB images. This means we
never actually have to deal with occlusions – there is al-
ways at least one image where the object being positioned
is fully visible. Unfortunately, monocular depth estimations
from the decluttered images are often completely incongru-
ent. We address this problem by devising a depth alignment
optimization that allows us to always fit objects against their
unoccluded counterparts while still yielding a single coher-
ent scene.

Our full pipeline is divided in two stages: iterative object
removal (stage 1) and layout optimization (stage 2). The
goal of the first stage is to create a sequence of RGB images
that depict the scene with a decreasing number of objects.
It starts with an input image, which is fed into a VLM [31]
with custom prompts to subsequently yield the name of a
candidate foreground object. We then feed the VLM textual
output along with the image into a text-conditioned image
segmentation model, Grounded SAM [16, 27], which gen-
erates an object mask. The masked object is then removed
via conditional image generation [19, 29]. The whole pro-
cess is then iteratively repeated with the resulting image
until the VLM no longer identifies any objects in the im-
age. We then move on to stage 2. We start by feeding the
object masks and images computed in the previous stage
to a single-view reconstruction model [32]. Then, we run
monocular depth estimation on each image [34] and opti-
mize their output using a depth alignment procedure to con-
solidate all depth estimates into a coherent space. Finally,
we use geometric fitting aided by VGGT [33] to position
and orient the reconstructed complete objects following the
consolidated depths to create the final scene.

We evaluate our method on well-known datasets against
competitive 3D reconstruction baselines. When evaluated
on the 3D-Front dataset, our method improves the current
state-of-the-art with increased performance over F-Score
and Chamfer Distance respectively. Our qualitative results
show that, even relying solely on off-the-shelf models with-
out performing any additional fine-tuning, our method is
capable of reconstructing 3D scenes from complex real im-
age inputs, generalizing to domains beyond the traditional
furniture-centric benchmarks. We also show that our iter-
ative object removal approach can boost segmentation of
cluttered objects. On the ADE20K dataset, we compare our
approach with object removal against a single-step VLM +
GroundedSAM baseline, and report an increase in IoU and
RandIdx.

Our contributions are summarized as follows.
1. We introduce a novel VLM ”orchestrator” framework

that chooses the next object to remove in the scene,
and delegates the task to off-the-shelf vision models that



yield 3D object reconstruction;
2. We propose a 3D layout optimization method relying on

a depth-alignment procedure that consolidates depth es-
timates of images depicting the same scene with a vary-
ing number of objects; and

3. We demonstrate that removing foreground objects helps
segmentation of previously occluded objects, and their
associated 3D generation.

2. Related Work
3D Scene Understanding. Vision-language models
(VLMs) have recently demonstrated strong capabilities
in open-vocabulary reasoning and spatial understanding
[5, 13]. Through large-scale vision-language pretraining,
these models can describe object relationships and scene
structure in ways that suggest an implicit 3D awareness
— reasoning about depth, layout, and occlusion even
in complex environments [6]. Complementing this, vi-
sual foundation models such as SAM [17], Grounding
DINO [22], and inpainting models like LaMa [30] and
Stable Diffusion variants [28] have enabled accurate object
segmentation, detection, and removal. However, these
visual models alone often struggle to produce coherent re-
sults in the presence of occlusions or complex interactions
between objects. Our approach combines both types of
models by using VLMs not only as semantic descriptors but
also as structural guides, orchestrating a unified, training-
free pipeline that integrates visual foundation models for
segmentation and inpainting to robustly decompose and
reconstruct layered 3D layouts.

Image-to-3D. Diffusion/NeRF-based approaches have
made significant strides in generating 3D assets from
images or text. Many recent works leverage Score Dis-
tillation Sampling [26] to guide implicit representations
(such as NERFs or Gaussian Splats) using powerful 2D
diffusion priors [28]. These methods, such as Dream-
Fusion, Magic3D [20], produce high-fidelity results at
the object level, but typically assume sparse scenes or
centered objects. When applied to full scenes, they
often struggle with occlusion, spatial consistency, and
scalability, and tend to generate entangled or non-editable
outputs [8]. Our method takes a different path: instead
of distilling diffusion priors into scene geometry, we use
foundation models directly for segmentation, removal, and
reassembly of objects in cluttered environments, yielding
explicit, editable, and semantically consistent scene layouts.

Scene Generation with LLMs. There has also been a
growing body of work in using Large Language Models
(LLMs) to generate structured scene representations,
often combining language priors with symbolic scene
graphs or layout templates [9, 14, 15]. These systems can

generate impressive results in constrained domains, such as
indoor scenes with canonical room structures or familiar
object arrangements [11]. However, they often struggle
to generalize beyond the distribution of their training data
and often rely on static architectural priors such as room
boundaries or floor plans [2, 21]. In contrast, our system
bypasses the need for symbolic reasoning by operating
directly on image input and leveraging foundation models
that generalize naturally to a broad set of scenes, including
outdoor, cluttered, or atypical environments, without
requiring handcrafted structural priors.

Single-view scene reconstruction. Inferring a complete
3D scene from a single RGB image remains especially
challenging due to severe occlusions, weak depth cues,
and complex object interactions. Early approaches such as
DeepPriorAssembly [41] and PSDR-Room [37] assume a
fixed, closed set of object categories and exploit strong ar-
chitectural priors in structured indoor environments, which
constrains their ability to generalize beyond those domains.
More recently, CAST [38] introduces an occlusion-aware,
object-centric pipeline: each object is generated indepen-
dently by retraining large-scale 3D generative models, fol-
lowed by a physics-aware fitting scheme to resolve inter-
object collisions. While CAST impressively tackles oc-
clusions and physical consistency, it requires costly re-
training and task-specific model adaptations. By contrast,
our pipeline is fundamentally powered by a pretrained
VLM [31] that drives every decision—reasoning about hid-
den geometry, occlusions, and physical plausibility—within
a fully training-free, modular framework: the VLM orches-
trates off-the-shelf segmentation to partition the scene into
layers and then guides sequential object removal to recon-
struct each layer. Centering the VLM as the core decision
engine yields a scalable, editable scene synthesis pipeline
that operates without supervision, architectural priors, or
bespoke training.

3. Method
Our method consists of two stages: Iterative Object Re-
moval and Layout Optimization. The first stage iteratively
removes objects from the input image until only the back-
ground remains. The output of this stage is a sequence of
(gradually emptier) images and masks indicating which ob-
jects are removed at each iteration. The second stage starts
by feeding those image-mask pairs into a single-view re-
construction model [35] to create a single 3D shape per pair
(except for the last pair that should not contain any object,
just a background). Additionally, for every RGB image in
the sequence we also estimate its depth using a monocu-
lar depth estimation network [34]. Finally, we optimize the
depth estimations to enforce their congruency and fit every
object to their respective (refined) depth estimation. Details
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Figure 3. Overview. Our method consists of two stages. In the
first, iterative object-removal stage, we use custom VLM prompt-
ing to identify the next best candidate for removal. Based on the
predicted object name, a segmentation module computes its mask,
and an inpainting module fills in the background. In the sec-
ond, layout-optimization stage, we reconstruct a complete mesh
for each removed object using the sequence of images and their
corresponding masks. To place the objects into a shared scene,
we first apply monocular depth estimation, then perform depth-
map refinement to align all independently predicted depth maps.
Finally, we translate and scale each object to fit the unified point
cloud, producing the final 3D scene.

on these stages are described below.

3.1. Iterative Object Removal

We adopt an iterative, VLM-guided inpainting procedure
to decompose a given RGB image I into a sequence of
N images (In)N1 , where each image In is obtained by
removing an object from In−1, and I1 = I. The goal of this
process is to generate amodal segmentation masks (Mn)

N
1

for all objects present within the scene. Amodal masks
contain both the visible and occluded parts of an object.
Specifically, at each step, we prompt the VLM to identify a
main object along with its corresponding supported objects,
which are then removed from the image. A graphical
overview of this stage is presented on the top section of
Figure 3.

Object Proposal. Given a single RGB image, our ap-
proach uses a VLM as an orchestrator to systematically
disentangle the complex scene into a sequence of objects.
Initially, the VLM is instructed to pick the closest and
fully distinct visible object without

any occlusions (unless it is at the edge of the cam-
era). The output of the VLM is an object name like human,
chair, or vase. The VLM is also instructed to note any
objects positioned on top or contained within the main
object–such as plates on a table or books on a bookshelf,
and to provide a textual description of the object. We refer
to those as secondary objects. When secondary objects
are found, they are handled first and the main object is
postponed to the next iteration. If secondary objects are
found to have secondary objects of their own (e.g. on a
table there is a vase that has plants), the VLM is instructed
to create a label representing both (e.g. a vase with
plants). If the VLM no longer identifies any objects
within the scene, the inpainting process stops. The full
prompt in provided in the supplementary material.
Implementation. We use ChatGPT-4o as our VLM orches-
trator [31].

Object Segmentation. At an iteration n of the object
removal process, after obtaining an object name from the
VLM (object proposal step), the next step is to segment
them in the given image In yielding a mask Mn. We
do that by using a Grounded Segment-Anything model
(Grounded-SAM) [27], equipped with High-Quality SAM
(HQ SAM) [16], to detect precise segmentation masks
conditioned on the text descriptions provided by the object
proposal. It is important to notice that we always segment
an object free of occlusion since we query the VLM for
the closest and fully distinct visible
object without any occlusions. Such object is
much easier to be segmented than an arbitrary one, and,
because we always remove it after segmentation (see next
step), there will always be an object free of occlusions for
as long as there are objects in the scene.

Foreground Removal. The last step of the n-th iteration
consists of removing the segmented object from the RGB
image. The result of this step is an image In+1 containing
one less object. We investigate two ways of accomplishing
this task. The first one involves using Flux Kontext [19]
with an input image outlining the object to be removed fol-
lowed by an object removal instruction. Specific details can
be found in supplemental material. The second one employs
a much smaller and less general image inpainting model. In
this approach, to avoid possible pitfalls from incorrect seg-
mentations, each segmentation mask is dilated slightly be-
fore it is passed to an object-removal model [29]. Existing
object-removal inpainting models often produce artifacts in-
fluenced by the context of the surrounding image. To avoid
this, we further dilate the mask used for object-removal and
crop the image to the bounds of this dilated mask. We query
the VLM to generate a prompt for a second, promptable in-
painting model [25] by requesting positive terms associated



with background materials (e.g. wooden flooring, white
walls, greenery, etc.) and negative terms associated with ob-
jects that could fit within the mask, but should not be added
to the image. The application of this second model finally
produces the next image in the sequence In+1.

All these steps are repeated until the VLM no longer
identifies objects in the current inpainted image or when
there are no objects detected by Grounded SAM. The result
of this procedure is a sequence of amodal masks (Mn)

N
1

and a sequence of RGB images depicting a progressively
emptier scene (In)N1 , where I1 corresponds to the full im-
age provided by the user and In is an image without any
objects, just a background.

3.2. Layout Optimization

After the first stage is complete, we are given two sequences
of (Mn)

N
1 and (In)

N
1 corresponding to binary masks and

RGB images, respectively, computed during the last stage.
An important relationship to keep in mind is that a mask
Mn contains the the object to be removed from In, and
In+1 is the result of removing Mn from In An illustration
of this stage can be found on the bottom section of Figure 3.

Mesh Reconstruction. Following the generation of the
sequence of masks (Mn)

N
1 and unpainted images (In)N1 ,

we pass each masked object, i.e. (Mn ⊙ In)N1 where ⊙
is the Hadamard product, into the Hunyuan2 [32], an
off-the-shelf image-to-3D model, to generate a sequence
of textured meshes (Mn)

N−1
1 . Note that in the original

images, some of these objects can be occluded, making
it impossible to directly pass them to an image-to-3D
generator without obtaining degenerate results. Our object
removal strategy is critical to obtain objects and their masks
free of any occlusions – this leads to significantly better
object reconstructions. However, generated meshes do not
adhere to the in situ pose of the target object. We make
use of a 3D fitting procedure that translates and scales the
generated meshes to better align with a set of depth maps
estimated by MoGe [34]. The depth estimator is applied
to each image in the sequence (In)N1 , which gives us a
sequence of disparity maps (Dn)

N
1 . Unfortunately, because

the estimation are computed independently, their disparities
are often dramatically different even in regions of the image
that are always fully visible.

Depth map refinement. Despite a common background
visible in all layers, monocular depth estimator models pro-
duce inaccuracies unique to each layer. To correct disparity
misalignments across depth maps, we introduce the follow-
ing coordinate-based MLP fθn , that refines the sequence of
disparity maps into (D′

n)
N
1 such that:

D′
n(x, y) =

{
Dn(x, y) if n = 1,

fθn
(
x̃, ỹ,Dn(x, y), In(x, y)

)
, for n = 2, . . . , N.

(1)

where, x̃ and ỹ are normalized pixel coordinates, and D1

serves as a fixed reference and is not refined. This refine-
ment method is similar to that of [18], but our MLP-based
approach offers greater flexibility compared to their bilin-
ear spline-based method. To encourage consistency across
adjacent layers, we define a loss that penalizes disparity dif-
ferences in non-occluded regions:

L(θ) =
N−1∑
n=1

∑
x,y

(
1−Mn(x, y)

) ∣∣D′
n(x, y)−D′

n+1(x, y)
∣∣.

(2)
We model each fθn as a small 3-layer perceptron and
optimize L over θ2, . . . , θL using the Adam optimizer. The
effect of performing the depth refinement is illustrated in
Figure 4.

Object Fitting. The goal is to estimate a similarity trans-
form T ∈ Sim(3) that maps the mesh coordinate frame of a
3D mesh M to the image/disparity space of a segmented
input image I with object mask M and disparity map D
(aligned with I). The procedure begins by renderingM un-
der S yaw offsets, producing a collection of synthetic views
{Ri}Si=1. These are passed together with the segmentation-
masked image I into VGGT [33], which predicts a coarse
rotation estimate Rest. The mesh is then rendered again
with this rotation removed, yielding an image Irot and a
corresponding disparity map Drot in a canonical pose.

While the first stage to our alignment procedure accounts
for gross misalignment between source image and gener-
ated mesh, we wish to further refine the alignment. VGGT
is applied once more to the pair (I, Irot), producing a set of
candidate 2D correspondences. Only correspondences with
confidence above a threshold K and within the mask M are
retained. If the number of valid correspondences exceeds a
minimum Nmin, the associated image points are backpro-
jected into 3D using their disparity values, and the simi-
larity transform T is computed by solving a least-squares
alignment problem between the two resulting point sets. If
instead the number of reliable matches is too low, a fallback
strategy is used: both D (restricted to M) and Drot (ren-
dered over the full field of view) are converted into point
clouds, and T is estimated via an Iterative Closest Point
(ICP) procedure. This two-stage design ensures robustness,
using direct correspondence fitting when possible and de-
faulting to dense disparity alignment when correspondences
are sparse.

The intuition behind this procedure is to decouple the
alignment problem into two stages. In the first stage, the
goal is to determine a coarse rotation estimate Rest that ori-
ents the mesh M so that its pose matches the appearance
of the cropped object in I. This coarse alignment is suffi-
cient to place the mesh in the correct orientation but does
not yet resolve its position within the full scene. In the sec-



Algorithm 1: Object Fitting via Segmenta-
tion–Render Correspondence

Input: I: segmented image with mask M
D: disparity aligned with I (after refinement)
M: 3D mesh
K: minimum confidence for correspondences
S: number of yaw renders (e.g., 8)

Output: T : Sim(3) transform mapping mesh space
to image/disparity space

Render S yaw views of meshM: {Ri}Si=1;
Rest ← VGGT.EstimateRotation(I, {Ri});
Irot, Drot ← Render(M;Rest);
(xyI, xyrot, conf)← VGGT.Track(I, Irot);
Filter correspondences:
idx← { j | conf[j] ≥ K, xyI[j] ∈ M };

if |idx| ≥ Nmin then
XA ← Backproject(D, xyI[idx]);
XB ← Backproject(Drot, xyrot[idx]);
T ← LEAST SQUARES(XB , XA);

else
PA ← DisparityToPointCloud(D, M);
PB ←
DisparityToPointCloud(Drot, all, FOV);
T ← ICP(PB , PA);

return T ;

ond stage, the method refines the alignment by exploiting
correspondences between I and Irot. This step incorporates
the disparity information D defined over the full image,
thereby grounding the mesh placement with respect to the
global camera intrinsics and scale. In other words, while the
cropped object provides local orientation cues, only the full
image supplies the geometric context required to determine
the absolute position ofM in the scene. This separation of
rotation estimation and full-scene placement makes the fit-
ting procedure both stable and robust. The full algorithmic
details are summarized in Algorithm 1.

In the end, after applying the fitting procedure to all
meshes, we get a sequence of aligned meshes (M′

n)
N−1
1

which constitutes a structured reconstruction of the input
image I, where each object is cleanly separated and recon-
structed individually. Notably, the last image IN in the se-
quence created during the first stage does not contain any
object – it only has a background. For this specific case,
we create a mesh following the refined depthD′

N by simply
tessellating the adjacent pixels; i.e. for every pixel coordi-
nate x, y create a triangle connecting the points in ⟨x, y⟩,
⟨x+1, y⟩, ⟨x, y+1⟩ and ⟨x+1, y⟩, ⟨x+1, y+1⟩, ⟨x, y+1⟩.
In all figures throughout this paper, the background mesh is
colored in gray.
Object Filtering. Once all objects have been fitted to recon-

Before After

Figure 4. Depth refinement. When each object-removed image is
passed independently through a standard depth estimator, the re-
sulting depth maps do not align. To reconcile these discrepancies,
we introduce a depth-refinement optimization that jointly adjusts
the estimated depths into a single, coherent representation. Left:
Point clouds reconstructed from the raw depth estimates, color-
coded by their source image. Right: the same scene after applying
our alignment procedure. Notice how the optimization brings all
point clouds into tight agreement.

struct the full scene, we remove any object whose volume
overlaps more than 90% with another object generated ear-
lier in the sequence (i.e. if object A was fitted before object
B and their Intersection-over-Union is greater than 0.9, we
discard B). This step addresses rare cases in which the in-
painting model mistakenly inserts a different object into the
scene—for example, replacing one table with another.

4. Results

Datasets. We quantitatively evaluate our method on two
standard benchmarks: the 3D-Front [10] dataset for quan-
titative assessment of 3D reconstruction quality, and the
ADE20K [40] dataset to measure scene segmentation per-
formance.

3D-Front [10] is a large-scale, fully synthetic dataset of
indoor environments composed of professionally modeled
room layouts. To conduct quantitative comparisons, we
sample 600 images and associated ground truth 3D recon-
structions from the preprocessed by PanoRecon [7] to form
our single-image dataset. All images are rendered with the
virtual camera held level to the ground plane at a height of
0.75m above the floor. For each image, the ground-truth
mesh is obtained by keeping only the geometry within the
camera’s view frustum and discarding everything else.

The ADE20K [40] dataset is the basis for the MIT Scene
Parsing Benchmark [39], which provides a standard training
and evaluation platform for scene parsing algorithms. The
ADE20K dataset contains over 20,000 scene-centric images
exhaustively annotated with objects and object parts across
150 semantic categories, including “stuff” classes (e.g., sky,
road, grass) and discrete object classes (e.g., person, car,
bed). We sample 500 scenes from the test set.

Qualitative results in outdoor and indoor scenes can be
found in Figures 9 and 7, respectively. We also demonstrate
the performance of our method when applied to syntheti-
cally generated images in Figure 6. This setup comprises a
fully automatic text-to-3D pipeline.



4.1. Reconstruction Evaluation on 3D-Front

Baselines. We compare our method against leading
single-view 3D reconstruction approaches. Gen3DSR [3]
and MIDI* leverage pre-trained open entity segmentation
systems, depth, and object reconstruction models. Differ-
ently from our approach, they deal with occluded objects
by training occlusion-aware models that will operate in
individual scene objects. Gen3DSR proposes training an
image-based amodal completion model while MIDI creates
an amodal object reconstruction system. Since the original
MIDI predictions rely on predetermined class labels, we
estimated those using VLMs and used that in our evaluation
(MIDI*). Qualitative comparisons can be found in the
supplemental material. For ablations, we assess two key
variations of our pipeline: one without the object filtering
step in object fitting stage (to evaluate the impact of object
removal artifacts), and another without depth alignment,
where each object is fitted using its raw inpainted depth
map; see Section 3.2 for details. Full results on these can
be found in the supplemental material

Metrics. We evaluate reconstruction quality using several
standard metrics: Chamfer Distance (CD), F-Score (FS),
Object-level F-Score (Obj-FS), Depth Error, Segmentation
IoU, and Mesh IoU (M-IoU). Following [24], we use a
0.1 (≈ 10cm) threshold for CD and FS on 3D-FRONT
dataset, and sample 10k points per object for geometric
comparisons. Obj-FS is computed by matching ground-
truth objects with their best predicted object pair. Depth
error is measured as the mean absolute difference in depth
renderings. Segmentation IoU measures the alignment
between predicted 2D masks and ground-truth labels, while
Mesh IoU evaluates segmentation rendered from the recon-
structed mesh. Note that our method fully reconstructs the
scene background using the depth given by the last iteration
of inpainting, but in these evaluations, only the objects are
considered for metric computations.

Quantitative Results. As shown in Table 1, our method
outperforms all baselines across every metric, including
Chamfer Distance, F-Score, Depth, and Segmentation.
Compared to systems like Gen3DSR and MIDI*, our
approach yields higher object-level fidelity and geometric
accuracy. Interestingly, the performance of our model
remains robust even without object filtering, suggesting
that artifacts introduced during object removal have limited
adverse effect on final reconstruction. In contrast, disabling
depth alignment leads to consistent degradation across all
metrics, underscoring the value of maintaining coherent
depth priors throughout the reconstruction pipeline. Qual-
itative comparisons against other methods [12, 41] can be
found in the supplemental material.

Robustness to Scene Complexity. We evaluate the robust-
ness of our method when exposed to varying levels of scene
complexit in the supplemental material.

Model Chamfer ↓ P@0.1 ↑ R@0.1 ↑ F1@0.1 ↑
Gen3DSR 0.12 67.54 74.50 70.18
Gen3DSR (w/ backgrounds) 0.21 59.11 53.31 55.48
MIDI* 0.24 51.95 48.67 49.36

Ours 0.11 72.58 73.38 71.65
Ours (w/ backgrounds) 0.17 72.58 55.56 61.69
Ours (filtered) 0.12 71.03 69.90 68.85
Ours (filtered, w/ backgrounds) 0.17 70.96 54.01 60.10

Table 1. Quantitative evaluation on 3D-Front. Our method out-
performs the closest baselines (Gen3DSR and MIDI*) across all
metrics, except for recall when background regions are excluded
from the evaluation, where Gen3DSR achieves slightly higher re-
call. The results further highlight the importance of depth refine-
ment, which consistently improves performance across all metrics.

4.2. Segmentation Evaluation on ADE20K

To assess our system’s scene parsing capability in more
complex, real-world scenarios, we perform an evaluation on
a subset of the ADE20K dataset [40]. Unlike the 3D-Front
dataset, which contains only 1–5 objects per scene and is
synthetic in nature, ADE20K comprises richly annotated
real-world scenes that often feature a significantly higher
number of objects, occlusions, and clutter. Although 3D
ground truth is not available for these scenes, we can still
benchmark our system’s ability to parse and reconstruct
scenes by measuring the segmentation performance.

Our evaluation here focuses on testing the efficacy of
our object removal pipeline, which plays a critical role in
enabling robust object segmentation and reconstruction un-
der heavily occluded or cluttered environments. To iso-
late the contribution of object removal, we compare our
full pipeline with an ablated version that omits object re-
moval—akin to Gen3DSR. We show some examples in
Figure 5. We conduct our quantitative evaluation in two
settings. One measures the IoU and RandIdx over things
classes [4]—i.e., discrete, countable objects such as chairs
or lamps—as opposed to stuff classes like sky or floor.
Since our system targets object-centric reconstruction, this
is the most relevant metric. The other setting also includes
classes from the stuff but excludes the ones explicitely
prompt the VLM to ignore. We refer to this subset of classes
as stuff*.
Quantitative Results. As shown in Table 2, our method
outperforms the ablation consistently across all evaluation
settings. In particular, the largest gain is observed in the
things category, highlighting the importance of our iterative
object removal pipeline for discovering and segmenting oc-
cluded or overlapping objects. The things+stuff evaluation
further validates that our system maintains high precision
even under stricter constraints.



Figure 5. Qualitative comparison on ADE20K segmentations.
From left to right: input, ground truth, with iterative object re-
moval, and without iterative object removal.

Method IoU RandIdx
Things

Ours (w/ obj. removal - Kontext [19]) 0.51 0.29
Ours (w/ obj. removal - inpainting [29]) 0.49 0.32
Ours (w/o obj. removal) 0.45 0.27
Gen3DSR 0.50 0.23

Things & Stuff

Ours (w/ obj. removal - Kontext [19]) 0.44 0.27
Ours (w/ obj. removal - inpainting [29]) 0.44 0.29
Ours (w/o obj. removal) 0.35 0.20
Gen3DSR 0.41 0.16

Table 2. Segmentation IoU scores on the SceneParsing dataset.
stuff* corresponds to classes belonging to the stuff segment, but ex-
cluding the ones we specifically asked to be ignored in our prompt.
“Ours” designates our original pipeline; “w/o obj. removal” is an
ablation that performs segmentation in a single step without the
our iterative object removal procedure.

Moody fantasy 
illustration of
a wizard and 
his ancient 
library.

Structured 3D ReconstructionInputPrompt

Underwater ruins 
draped in coral 
and kelp, a carved 
sea-god relief 
partly obscured, 
shafts of turquoise 
light

Cyberpunk neon alley 
at midnight, two 
hooded operatives 
exchanging data 
behind steaming 
vents and tangled 
chrome cables

Figure 6. Text-to-3D Scene pipeline. We show that our method
can be applied to images generated by text-to-image models [25].
This corresponds to a fully automated text-to-3D scene pipeline.

Limitations & Future work While our method shows
strong performance across both synthetic and real-world

Input Structured 3D Reconstruction

Figure 7. In-the-wild indoor scenes. Our method is capable
of generating 3D reconstructions of individual objects and back-
grounds without being restricted to specific categories.

scenes, several limitations remain. We consider the object
alignment to be the most challenging portion of the cur-
rent pipeline. Even though VGGT provides reasonable esti-
mates in most of the cases, there are scenarios where the ini-
tial rotation estimation is imprecise and insufficient reliable
correspondences are found. The object removal system is
also not perfect – inpainting-based [29] approach can some-
times lead to artifacts and ghost objects while text-guided
editing alternatives [19] sometimes fail to remove any ob-
ject when the category provided by the VLM is not precise.
Future work could explore the use of video depth estimation
models to better leverage the sequence of images produced
during object removal. As foundation models and genera-
tive systems continue to improve, our modular pipeline is
well positioned to take advantage of these advances.

5. Conclusion
We introduce SeeingThroughClutter, a training-free frame-
work for open-vocabulary 3D scene understanding from a
single RGB image. By leveraging vision-language mod-
els (VLMs) as scene orchestrators and combining them
with iterative object removal, segmentation, and depth-
guided layout optimization, our system decomposes com-
plex real-world scenes into structured 3D layouts. Un-
like prior work, which treats scene understanding as a one-
shot labeling or segmentation problem, our method reasons
over object relationships and occlusions—enabling accurate
amodal segmentation and geometry recovery in cluttered
environments. Through experiments on both synthetic (3D-
Front) and real-world (ADE20K) benchmarks, we demon-
strate that our system not only outperforms existing state-
of-the-art methods in 3D reconstruction metrics but also re-
mains robust under increasing scene complexity.
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6. VLM orchestrator

We provide the prompt we use to query the VLM (GPT-4o)
and prompt to remove objects (Flux Kontext).

6.1. Amodal selection

Amodal Selection Prompt

# Instructions
1. You will be given an image of a scene. First, describe what the
scene is.
2. Examine the scene and identify the object that is closest to the
camera. This object should be distinct and fully visible, meaning it
is not occluded by any other objects (unless part of it is outside the
camera’s frame). If it is occluding any objects, note which objects it
is occluding. If there are no objects in the scene, state that the scene
is empty.
3. If the scene is not empty and you have identified the closest fully
visible object, explain why it might be there in relation to the full
scene. Explain if there are any objects adjacent to the closest fully
visible object and explain how they are behind the closest fully vis-
ible object. Use your explanations to re-evaluate what the closest
fully visible object is.
4. Once you have determined what the closest fully visible object is,
check if there are any small, distinct objects placed on top of or inside
the fully visible object. These are referred to as secondary objects
and should not include integral parts of the visible object itself. List
these objects if applicable.
5. Once you’ve identified the objects, compile your list in the format:
- {VISIBLE OBJECT: [Object]}
- {SECONDARY OBJECTS: [Object 1, Object 2, ..., Object N]}
Examples:
- For an empty scene: {VISIBLE OBJECT: []},
{SECONDARY OBJECTS: []}
- For a scene with a table as the closest fully visible object and a book
on top: {VISIBLE OBJECT: [Table]}, {SECONDARY OBJECTS:
[Book]}
# Guidelines
1. If there are multiple objects that seem to be equally distant from
the camera and fully visible, pick one of them to be selected for
{VISIBLE OBJECT: []}.
2. In your final list of objects, exclude objects that could be con-
sidered background elements, such as floors, walls, windows, doors,
grass, rugs, or other structures. If the visible object is one of these
background elements, pick the next closest fully visible object if
there is one. If there isn’t, state so.
3. When describing objects, try to keep the names of these objects
between 1–3 words. Avoid unnecessary adjectives.
4. When compiling your lists, use the singular form of objects, even
if there are multiple. Only include the name of the object in your
compiled lists, NOT the explanations.

5. If there are no secondary objects on or inside the fully vis-
ible object, format the list as: {VISIBLE OBJECT: [Object]},
{SECONDARY OBJECTS: []}
6. If you are unsure if there are any objects, leave the lists empty:
{VISIBLE OBJECT: []}, {SECONDARY OBJECTS: []}
# Prompt
Using the provided instructions and image of a scene, identify
the object closest to the camera that is fully visible and not oc-
cluded by any other objects. Then, determine if there are any sec-
ondary objects on or inside it. Compile your findings in the formats
{VISIBLE OBJECT: []} and {SECONDARY OBJECTS: []}.

Amodal Selection Output

OUTPUT:
Scene description:
A cozy living room with brown leather seating, a central wooden
coffee table on a patterned rug, a large TV, windows with outdoor
greenery, and several plants and wall art.
Closest fully visible object:
The small leather ottoman in the foreground, centered near the bot-
tom.
Secondary objects on or inside it:
None visible.

- {VISIBLE OBJECT: [Ottoman]}
- {SECONDARY OBJECTS: []}

6.2. Inpainting

Inpainting Prompt

Prompt: Remove the {OBJ NAME} inside of the red highlight.

1



Algorithm 2: LEAST SQUARES

Input: XB ∈ RN×3: points from rotated render
(space B)

XA ∈ RN×3: points from depth (space A)
Output: T : Sim(3) transform [sR | t] mapping

B → A
µB ← 1

N

∑
XB , µA ← 1

N

∑
XA;

X̃B ← XB − µB , X̃A ← XA − µA;
Σ← 1

N X̃⊤
A X̃B ;

U,D, V ⊤ ← SVD(Σ);
Sfix ← diag(1, 1, sign(det(UV ⊤)));
R← USfixV

⊤;
s← trace(SfixD)

Var(X̃B)
;

t← µA − sRµB ;
Form T ∈ R4×4 with T0:3,0:3 = sR, T0:3,3 = t;
return T ;

Output:

7. Object Fitting Algorithms

Algorithm 3: ICP
Input: PB : source cloud from rotated render

PA: target cloud from segmented depth
v: voxel size, r: NN radius, ρ: keep ratio, Tmax:

max iters
Output: T : Sim(3) transform [sR | t] mapping

B → A
PB ← VoxelDownsample(PB , v);
PA ← VoxelDownsample(PA, v);
Initialize scale s, rotation R = I , translation t by

centroid alignment;
for iter ← 1 to Tmax do

Pnow
B ← sRPB + t;

Corr ← NearestNeighbor(Pnow
B , PA, r);

if |Corr| < Nmin then
break

Compute residuals {∥pnowB −pA∥}(pB ,pA)∈Corr;
Keep top K = max(8, ⌊ρ|Corr|⌋) pairs;
X ← source subset, Y ← target subset;
(s,R, t)← SIM3 LEAST SQUARES(X,Y );
if change in RMS < δ then

break
Form T from s,R, t and return;



Input MIDI* Gen3DSR Ours Ours (Filtering)

Figure 8. Qualitative comparison between MIDI*, Gen3DSR, ours, ours (w/ object filtering) on 3D front scenes.
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Figure 9. A gallery of qualitative results on in-the-wild indoor and outdoor scenes.
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